Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 179: 144-153, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38471252

RESUMEN

The treatment and recycling of discarded crystalline silicon photovoltaic modules (c-Si PV modules) has become a research focus, but few research have paid attention to the standardized treatment of c-Si PV module's fluorinated backsheet. Improper management of fluorinated backsheet can pose ecological and human health risks. Therefore, this study presents a novel method for processing the backsheet. The proposed approach entailed the utilization of ethanol (CH3CH2OH) to separate the backsheet from the PV module. Subsequently, the separated backsheet underwent decomposition using an alkaline ethanol (NaOH-CH3CH2OH) solution. Finally, the backsheet was recovered in the form of terephthalic acid (TPA) with a purity of 97.47 %. This recovered TPA can then serve as a valuable raw material for producing new backsheets, fostering a closed-loop material circulation. Experimental results demonstrate that immersing the PV module in a 75 % CH3CH2OH-H2O solution at a temperature of 343 K for 30 min achieved 100 % separation of the backsheet. Furthermore, subjecting the separated backsheet to a 60 min reaction in an NaOH-CH3CH2OH solution with a temperature of 343 K and a NaOH concentration of 1.0 mol/L achieved complete decomposition. The reaction mechanism was analyzed through characterization methods such as SEM/EDS, NMR, FTIR and XRD. This method is efficient, non-toxic organic reagent-free and environmentally friendly, so it holds significant potential for further development in the field of c-Si PV module recycling.


Asunto(s)
Reciclaje , Silicio , Etanol , Reciclaje/métodos , Silicio/química , Hidróxido de Sodio , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...